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AN EXTENSION THEOREM FOR 
SEPARABLE B A N A CH SPACES 

BY 

Y. BENYAMINI 

ABSTRACT 

We construct a totally disconnected oJ*-closed, norming subset F of the unit 
ball B* of an arbitrary separable Banach space, iX, and an operator from C(F) 
to C(B*) that "almost" commutes with the natural embeddings of X. This is 
used to give a new proof of Milutin's theorem and to prove some new results on 
complemented subspaces of C[0, 1] with separable dual. In particular we show 
that a complemented subspace of C(~o~), is either isomorphic to C(oJ ~) or to c,,. 

w Introduction 

Let X be a Banach space and F a oJ*-closed subset of B * - - t h e  unit ball of 

X*.  The  set F is called A -norming if sup { 0 (x)  : 0 E F} => A II x H for all x E X. If F 

is a r subset of B *, we deno te  by iv the natural  map of X into C(F) (the 

space of cont inuous functions on F )  defined by (iFx)(O)= O(x). The  set F is 

A-norming iff it- is an isomorphism into C(F) satisfying AII x II =< II ivx 11 <= II x It for  

every  x ~ X. In the special case that F = B*,  we shall deno te  i~,. by i. Clearly i is 

an isometry.  

The  main result of this paper  is the following extension theorem.  

THEOREM 1. Let X be a separable Banach space and e > O. Then there exists a 

totally disconnected, w *-closed, (1 - E)-norming subset F of B *, and a norm one 

operator S: C(F) ~ C(B *) satisfying I] Si~x - ix [[ =< E H x 1[ for all x E X. 

To explain the theorem,  assume (although this is impossible in general)  that 

e = 0 .  Then  the claim would be that one can find a totally disconnected,  

r 1-norming set F, and a norm one opera to r  S :C(F) - -+  C(B*) for 

which the following diagram commutes :  
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x , c ( F )  

C(B *) 

With the e, the theorem says that this can "almost" be done. 

Theorem 1 will be proved in Section 3. In Section 2 we give some applications 

of this theorem. The first is a new proof of Milutin's theorem on the isomorphism 

of the spaces C(K), K uncountable compact metric. 

The second application is to the study of complemented subspaces of C(0, 1) 

with separable dual. We use the recent profound results of M. Zippin [11], and 

prove the following: 

THEOREM 2. Let X be isomorphic to a complemented subspace of C(O, 1), 

with X* separable. Then there exists a countable compact metric space K, such 

that X is a quotient of C(K). 

It is well known [7] that for every countable metric space K, there is a 

countable ordinal c~, such that K is homeomorphic to {/3 :/3 =< a}, where the 

latter is equipped with the order topology. We denote by C(a )  the space of 

continuous functions on {/3 :/3 -< a}. 

Bessaga and Pelczynski, [3], proved that if a _-</3, then C(a )  is isomorphic to 

C(/3) iff/3 < a ~. In particular the first a such that C(a )  is not isomorphic to co is 

w ~. Theorem 2 is, in fact, quantitative, in the sense that it gives the a for which X 

is a quotient of C(o~). This fact, together with a recent result of Alspach [1], are 

used to prove our third theorem. 

THEORZM 3. Let X be isomorphic to a complemented subspace of C(w ~). Then 
X is either isomorphic to co or to C(w~). 

We shall use standard Banach space terminology (see e.g. [6]). All the results 

apply to real and complex Banach spaces. 

w Applications 

For a Banach space X, let A(X) = inf {ll T[111T-' II II P II}, where the inf is taken 

over all isomorphisms T from X into a C(K) space, and P is a projection from 

C(K) onto TX. It was proved in [2] that A(X) = inf{l[ O II}, where the inf is taken 

over all projections O from C(B*) onto iX. 
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We can now formulate the consequences of Theorem 1 in the form in which 

they will be used. 

PROeOSITION 1. Let X be a separable Banach space with A(X)<0r I f  

e < (3A (X)) ', there is a w *-closed, (1 - e )-norming totally disconnected subset of  

B*, and a projection P from C(F)  onto irX with IIP I] =< 2A (x) .  

PROOF. Since A(X) < or there is a projection Q : C(B*)--~ iX. By Theorem 1 

there are F and S satisfying the conclusion of the theorem for the given e. 

Define T: C(F)--~ iv)( by T = iri-'QS. Then II T II =< II Q II, and Jl TiFx  - iFx II--< 
e (1 - e)-'ll Q I[ II irx 11, for every x E X. Indeed, since Qix = ix we have 

]1 Tirx - irx ]1 = II ivi-' QSirx - irx If < ]l ir [I ]{i-' ]1 II Q II If SiFX -- ix ]1 <= e II Q ]111 x II. 

Since F is (1 - e ) norming II x II --< (1 - e)- ' l l  iFx I[. 
By a standard argument, if e(1-e)-lllQI]<l the operator TJ,~,, is an 

isomorphism of iFX onto itself, with inverse W satisfying Ilwll---- 
e) '11 Q 11) ~ The desired projection is P = WT, and its norm satisfies 

II P [[ -< II w II IIT II =< 2A (X), if II Q [[ is close enough to A (X). 

COROLLARY (Milutin's theorem). I f  K is an uncountable, compact metric 

space, then C ( K )  is isomorphic to C(O, 1). 

PROOF. By standard arguments (see e.g. [9]), it is enough to show that C ( K )  is 

isomorphic to a complemented subspace of C(F)  for some totally disconnected, 

compact, metric space F. But X = C ( K )  certainly satisfies the conditions of 

Proposition 1. Thus the result follows if we use the space F, the isomorphism iF 

and the projection P, guaranteed by this proposition. 

REMARKS. (1) For the special case X = C ( K )  above, it is very easy to write 

explicitly a norm one projection Q : C(B*)  ~ iX. Namely, for f E C(B*)  and 

k E K define ( i - l Q f ) ( k )  = f(Sk) (where 6~ ~ B* is the point evaluation given by 

6k(x) = x (k  ) for all x E C(K)) .  

(2) For other proofs of Milutin's theorem, see [8], [4], [9]. 

We now pass to our second application, but we first need some notation. 

Let X be a Banach space with a separable dual, and 6 >0 .  Let H be a 

~o*-closed subset of B *. The first 6-Szlenk subset H1 of H is defined as follows: 

O E B * : 3 ( O . ) C H ,  3 ( x . ) C X  suchtha t  O .w.  ~ } -----~ O, x. ~0, 
H~ = 

[Ix.[[_-<l and l imsupO.(x . )>-_6.  
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Szlenk [10] has proved that H, is a closed subset of H. We can now define 

inductively for all ordinals y:  

H,+, = (H~),, and H~ = ("1 H e if ~/ is a limit ordinal. 
/3<v 

Szlenk has also shown that there is a countable ordinal r t = T/(H, 6) such that 

H , #  .O and H,+, = ~ .  We shall denote by ~(X, 3) the ordinal obtained for 

H = B*. r/(X, 6) is called the 6-Szlenk index of X. Obviously r/(H, 6)_-< r/(X, 8) 

for all H C B*. 

We can now formulate Zippin's result [11]. Although the following lemma is 

not formulated as such in [11], it summarizes Zippin's beautiful construction. 

Z1P~,iy's LEMMA. Let X be a Banach space with separable dual, and e > O. Let 

F be a to *-closed totally disconnected, (1 - e )-norming subset of B *. Then there is 

a countable ordinal a, a < w ~x'~l~+'~, and a subspace Y of C(F), isometric to 

C(a),  such that ]:or every x E X ,  there is a y E Y with Il i~x-yll  <- 

e(1 - e)-'ll ivx 1[. 

PROOV OF THEOREM 2. Since ) t ( x ) <  ~, take e < (10)t(x)) -1, and by Proposi- 

tion 1, find a totally disconnected, w*-closed ( 1 -  e)-norming subset F of B*, 

with a projection P:C(F)---~ ivX satisfying ]l P ]1 =< 2)t(X). 

By Zippin's lemma, there is a subspace Y of C(F), isometric to C(a),  such 

that for every x E X there is a y E Y with [t ivx - y l/=< e(1 - e)-'ll i~x II. 

Since e(1 - e) ' lIP[l< 1, the restriction of P to Y maps Yonto ivX. Thus X is 

a quotient of C(a).  

PROOF OF THEOREM 3. We distinguish the two cases by considering the Szlenk 

index of X. By a theorem of Alspach [1], if there is a 6 > 0  for which 

r/(X, 6) > w, then X contains a complemented subspace isomorphic to C(w~). 

Thus X is isomorphic to C(w ~) by Pelczynski's decomposition method [6]. 

If r/(X, 6 ) <  o~ for every 8 > 0, then by the proof of Theorem 2 and Zippin's 

lemma, X is a quotient of C(a)  for a < to"*~ where m = rt(X,e/8)<to.  By 

[3] C(a)  is isomorphic to c,,, and thus X, being an ~= quotient of co, is 

isomorphic to c0 by [5]. 

w Proof of Theorem I 

Let F,, = {0 E X* :[10 [[ =< 1 - e/2}. We shall construct a to *-closed, totally- 

disconnected, ( 1 - e ) - n o r m i n g  subset F of B*,  and a norm one operator  

T: C ( F ) ~  C(Fo) satisfying [I T iF x  - i~oX 11--< ~ e 11 x II. W e  then define 
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W: C(F,,)---> C(B*) by (Wf)(O) = f( ( l  - e /2)0) ,  and S = WT. Obviously [[ S ]]-< 

1, and for every x E X  and 0 • B *  

I(Si~x)(O) - ix(O)l<=l(Tivx)((1 - e / 2 ) 0 ) -  iv,,x ((1 - e /Z)0)  [ + ~e I x(O)l 

= Ilx I1+  ell x II = e l l x  II. 

Since X is separable,  we can find a b ior thogonal  sequence  (x., 0.)  in X with 

IIx. II = 1 for  all n, such that {x.} span a dense subset of X. The  metric 

p(O, 4') = Z2-~"+'I O(x.)-  tO(x.)l induces the ~o*-topology on B*  

For  n _-> 1, let Mo be integers satisfying Z I10. II M . '  < e/2,  and A.  = {j/M. :j is 

an integer,  IjI<=M.}. Let F . = { O E B * : O ( x j ) E A ~ j =  I, . . . , n  and I10[[_- < 

l - z ,  .... I[ O, It M ;'} and set F =  

Every  point 0 E F satisfies O(x.) E A .  for  all n, thus the map O : F---> rI._>~ A., 

defined by O(0)  = (O(x~), O(x2),...), is a homeomorph i sm  of F into the Cantor  

set I1A.. Consequent ly  F is totally disconnected.  

To  show that F is (1 - e ) -norming,  we shall show that it is an e /2-net  (in the 

norm topo logy! ) in  (1 - e/Z)B *. Thus let ]] 4' [[-<- 1 - e/Z, and for each n, choose j. 

such that (j. - 1)M~' _-< 4,(x.) --< (j. + 1)M~', and define 0 = 

~b + E . - ,  ( j .Mn'-  ~(x.))O.. Since E II ( j .M~' - tO(x.))O. II = E M ~ '  1[ 0. II < e/Z, 0 is 

well defined, Jl 0 - q, II < e/z ,  and II 0 [1 < 1. Since also O(x.) = j.M-.'E A .  for  all 

n, the condit ion II 0 I1 < 1 implies that 0 C F. for all large enough n, hence 0 E F. 

To  construct  T, we shall use the fact that the points in F. , are "very  close"  to 

points in F., to construct  for  each n_-> 1 a norm one ope ra to r  

7".: C(F.)---> C(F. ,) which almost commutes  with the embeddings  of X (see (b) 

below). The  opera to r  T is then obta ined  from the T.'s by a limiting procedure .  

Thus  fix n => 1. We shall construct  T.:  C(F.)--~ C(F._~), satisfying: 

(a) For  every 0 E F._,, (T.f)(O) is a convex combinat ion  of the values of f at 

some points {+j} in F. (depending on 0) with p(O, tOj)=< 2-" for  every j. 

(b) ]] T.ivx-iv~ ,x II =< M:'[[  0. [[ II x II, 

Let  {&(t)} be a parti t ion of unity for  [ -  1, 1], with {t : g j ( t ) ~  0} C ( ( j -  1)M~', 

(j + 1 )M. ' ) ,  and define T.(f) for  f E  C(F.) and 0 E F. , by 

(T.J)(O) = ~ g,(O(x.))f(O + ( ] M . ' -  O(x.))O.). 
q F~M. 

Also let qJj = 0 + (jM-.' - O(x.))O.. If for  some j, gj(O(x.)) ~ O, then (j - 1)M~' < 

O(x.) < (j + 1)M.  1, and thus 110 - q,j [[ _-< M~'][ 0. [[. Also, since 

OEF.  ,,tOj(x,)EA~ for all i <=n. 
Thus 7". is well defined: If the j,h term in the sum is non-zero,  then 
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[[ tpj I[--< [I 0 [[ + M2'[[ 0, [i -< 1 - 2, >. M, ' I [  0~ [I (because 0 �9 F._,), and thus ~O i �9 F,. 

(It is also clear that Tff is a cont inuous  function.)  

Since for  every  0, the gj(O(x.)) are non-negat ive  and sum to one, (T.f)(O) is a 

convex combinat ion  of the numbers  f(O~). Also P(0i, 0) = 

2-<"+'~10(x.) - 0r (x . )  I -<- 2 " for  every j for which gi(0 (x.))  / 0, and thus (a) 

holds. (Note that (a) also implies that [[ T.[[ =< 1.) 

To  prove  (b), not ice that if x �9 X, it is l inear on B*,  hence 

(ToiFox)(O) = O(x)+ :g, (O(x.) ) ( jM: ' -  O(x.))O~ 

or (since (iF. ~x)(O)= O(x)) 

I(T, iFox)(O) - (iF. ,X)(O)I<= M ,  ~ II on II II x II 

(because each of the non-zero  terms in the convex combinat ion is bounded  by 

the right hand side). 

The  limiting p rocedure  is descr ibed in the following: 

CLAIM. Let  f @ C(F) ,  and let h be any cont inuous extension of f to B*.  

Then  f,  = (T~ �9 �9 �9 T,)(h IF.) is a Cauchy sequence  in C(F0). Moreover ,  Tf = l imf ,  

is i ndependen t  of the part icular  choice of the extension h. 

PROOF OF THE CLAIM. Fix any 8 > 0. By the continuity of h there  is an r / >  0 

such that p(0,4,)< r/ implies that I h (O) -h (O) l<  6, and choose N so that 

E.=~N 2 " < r/. Since II ~[[ = 1, we get for  every  n > m => N that 

IIf, - f - ,  1[ = II T , . . .  Tm(h Iv , . ) -  7"1... r.(h [ Fo)II 

II h IF. - + , . . .  r . ( h  IFo)ll. 

Thus fix any 0 E Fro. Using (a) inductively,  we see that (T.,+~..-  T.(h IFo))(O) 
is a convex combinat ion  of the values of h at some points {qJj} in F., with 

p(O, 0 j ) -  -< 27, 2 -k < "q. But  then ]h(O)- h(q'j)r < 8 for  all j, and the same holds 

for  their  convex combinat ions,  i.e., I(T,.+,... T.(h I ~o ) ) (0 ) -  h ( 0 ) [ <  fi, and {f.} 

is indeed a Cauchy sequence.  

Also if h~ is ano ther  extension of f to B*,  let U = {0 :l h(O)-  h,(O)l < 6}. U 
is an open  ne ighborhood  of F, and thus, by the definition of F, there  is an N so 

that F.  C U for every n ->_ N. Using again the fact that [I Tn II = 1 for  all n, we get 

that II T ,  - . . T . ( h  I F. - -  h~ I F . ) t t  <= 8.  

The  ope ra to r  T : C(F)--~ C(Fo) defined by the claim is the desired opera tor .  It 

is obviously linear, and IIT II = 1 by an a rgument  similar to the last a rgument  in 

the proof  of the claim. 
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Now if x E X, we can take h = ix as the extension of f = iFX. We then get by 

(b) that for every n -> 1 

II T~ . . . T . i r . x - i r o  x [[ <-_ ~ II TI . . . TjiF~x - T~ . . . T j - jF ,_ , x  II 
J 

<= Y~ If TjiF X --iF,_,X II <= E M 7' l] 0, 11 [Ix [[ 

<= / 2  tl x fl . 

Hence  also in the limit I[ Ti x - I[ --- II x II. 

REUARK. It may be of some importance to note that the opera tor  T is 

"a lmos t"  a simultaneous extension operator.  Indeed, one easily checks that if 

0 E F. f3 F._~ then ( T . ] ) ( O )  = f ( O )  for all f E C ( F . ) .  And thus also in the limit 

we get that T f ( O )  = f ( O )  for all 0 E F N Fo and f E C ( F ) .  
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