AN EXTENSION THEOREM FOR SEPARABLE BANACH SPACES

ΒY

Y. BENYAMINI

ABSTRACT

We construct a totally disconnected ω^* -closed, norming subset F of the unit ball B* of an arbitrary separable Banach space, X, and an operator from C(F)to $C(B^*)$ that "almost" commutes with the natural embeddings of X. This is used to give a new proof of Milutin's theorem and to prove some new results on complemented subspaces of C[0, 1] with separable dual. In particular we show that a complemented subspace of $C(\omega^{\omega})$, is either isomorphic to $C(\omega^{\omega})$ or to c_{ω} .

§1. Introduction

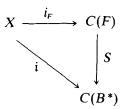
Let X be a Banach space and F a ω^* -closed subset of B^* —the unit ball of X^* . The set F is called λ -norming if $\sup \{\theta(x) : \theta \in F\} \ge \lambda ||x||$ for all $x \in X$. If F is a ω^* -closed subset of B^* , we denote by i_F the natural map of X into C(F) (the space of continuous functions on F) defined by $(i_F x)(\theta) = \theta(x)$. The set F is λ -norming iff i_F is an isomorphism into C(F) satisfying $\lambda ||x|| \le ||i_F x|| \le ||x||$ for every $x \in X$. In the special case that $F = B^*$, we shall denote i_B by *i*. Clearly *i* is an isometry.

The main result of this paper is the following extension theorem.

THEOREM 1. Let X be a separable Banach space and $\varepsilon > 0$. Then there exists a totally disconnected, ω^* -closed, $(1 - \varepsilon)$ -norming subset F of B^{*}, and a norm one operator $S: C(F) \rightarrow C(B^*)$ satisfying $||Si_Fx - ix|| \le \varepsilon ||x||$ for all $x \in X$.

To explain the theorem, assume (although this is impossible in general) that $\varepsilon = 0$. Then the claim would be that one can find a totally disconnected, ω^* -closed 1-norming set F, and a norm one operator $S: C(F) \to C(B^*)$ for which the following diagram commutes:

Received January 12, 1977



With the ε , the theorem says that this can "almost" be done.

Theorem 1 will be proved in Section 3. In Section 2 we give some applications of this theorem. The first is a new proof of Milutin's theorem on the isomorphism of the spaces C(K), K uncountable compact metric.

The second application is to the study of complemented subspaces of C(0, 1) with separable dual. We use the recent profound results of M. Zippin [11], and prove the following:

THEOREM 2. Let X be isomorphic to a complemented subspace of C(0, 1), with X^{*} separable. Then there exists a countable compact metric space K, such that X is a quotient of C(K).

It is well known [7] that for every countable metric space K, there is a countable ordinal α , such that K is homeomorphic to $\{\beta : \beta \leq \alpha\}$, where the latter is equipped with the order topology. We denote by $C(\alpha)$ the space of continuous functions on $\{\beta : \beta \leq \alpha\}$.

Bessaga and Pelczynski, [3], proved that if $\alpha \leq \beta$, then $C(\alpha)$ is isomorphic to $C(\beta)$ iff $\beta < \alpha^{\omega}$. In particular the first α such that $C(\alpha)$ is not isomorphic to c_0 is ω^{ω} . Theorem 2 is, in fact, quantitative, in the sense that it gives the α for which X is a quotient of $C(\alpha)$. This fact, together with a recent result of Alspach [1], are used to prove our third theorem.

THEOREM 3. Let X be isomorphic to a complemented subspace of $C(\omega^{\omega})$. Then X is either isomorphic to c_0 or to $C(\omega^{\omega})$.

We shall use standard Banach space terminology (see e.g. [6]). All the results apply to real and complex Banach spaces.

§2. Applications

For a Banach space X, let $\lambda(X) = \inf \{ \|T\| \| T^{-1} \| \|P\| \}$, where the inf is taken over all isomorphisms T from X into a C(K) space, and P is a projection from C(K) onto TX. It was proved in [2] that $\lambda(X) = \inf \{ \|Q\| \}$, where the inf is taken over all projections Q from $C(B^*)$ onto iX.

Y. BENYAMINI

We can now formulate the consequences of Theorem 1 in the form in which they will be used.

PROPOSITION 1. Let X be a separable Banach space with $\lambda(X) < \infty$. If $\varepsilon < (3\lambda(X))^{-1}$, there is a ω^* -closed, $(1 - \varepsilon)$ -norming totally disconnected subset of B^* , and a projection P from C(F) onto $i_F X$ with $||P|| \le 2\lambda(X)$.

PROOF. Since $\lambda(X) < \infty$ there is a projection $Q: C(B^*) \to iX$. By Theorem 1 there are F and S satisfying the conclusion of the theorem for the given ε . Define $T: C(F) \to i_F X$ by $T = i_F i^{-1} QS$. Then $||T|| \le ||Q||$, and $||Ti_F x - i_F x|| \le \varepsilon (1-\varepsilon)^{-1} ||Q|| ||i_F x||$, for every $x \in X$. Indeed, since Qix = ix we have

$$||Ti_{F}x - i_{F}x|| = ||i_{F}i^{-1}QSi_{F}x - i_{F}x|| \le ||i_{F}|| ||i^{-1}|| ||Q|| ||Si_{F}x - ix|| \le \varepsilon ||Q|| ||x||.$$

Since F is $(1 - \varepsilon)$ norming $||x|| \leq (1 - \varepsilon)^{-1} ||i_F x||$.

By a standard argument, if $\varepsilon (1-\varepsilon)^{-1} ||Q|| < 1$ the operator $T|_{i_FX}$ is an isomorphism of i_FX onto itself, with inverse W satisfying $||W|| \le \Sigma(\varepsilon(1-\varepsilon)^{-1} ||Q||)^n$. The desired projection is P = WT, and its norm satisfies $||P|| \le ||W|| ||T|| \le 2\lambda(X)$, if ||Q|| is close enough to $\lambda(X)$.

COROLLARY (Milutin's theorem). If K is an uncountable, compact metric space, then C(K) is isomorphic to C(0, 1).

PROOF. By standard arguments (see e.g. [9]), it is enough to show that C(K) is isomorphic to a complemented subspace of C(F) for some totally disconnected, compact, metric space F. But X = C(K) certainly satisfies the conditions of Proposition 1. Thus the result follows if we use the space F, the isomorphism i_F and the projection P, guaranteed by this proposition.

REMARKS. (1) For the special case X = C(K) above, it is very easy to write explicitly a norm one projection $Q: C(B^*) \rightarrow iX$. Namely, for $f \in C(B^*)$ and $k \in K$ define $(i^{-1}Qf)(k) = f(\delta_k)$ (where $\delta_k \in B^*$ is the point evaluation given by $\delta_k(x) = x(k)$ for all $x \in C(K)$).

(2) For other proofs of Milutin's theorem, see [8], [4], [9].

We now pass to our second application, but we first need some notation.

Let X be a Banach space with a separable dual, and $\delta > 0$. Let H be a ω^* -closed subset of B^* . The first δ -Szlenk subset H_1 of H is defined as follows:

$$H_{1} = \left\{ \begin{array}{ccc} \theta \in B^{*} : \exists (\theta_{n}) \subseteq H, \exists (x_{n}) \subseteq X & \text{such that} & \theta_{n} \xrightarrow{\omega} \theta, x_{n} \xrightarrow{\omega} 0, \\ \|x_{n}\| \leq 1 & \text{and} & \limsup \theta_{n}(x_{n}) \geq \delta. \end{array} \right\}$$

$$H_{\gamma+1} = (H_{\gamma})_1$$
, and $H_{\gamma} = \bigcap_{\beta < \gamma} H_{\beta}$ if γ is a limit ordinal.

Szlenk has also shown that there is a countable ordinal $\eta = \eta(H, \delta)$ such that $H_{\eta} \neq \emptyset$ and $H_{\eta+1} = \emptyset$. We shall denote by $\eta(X, \delta)$ the ordinal obtained for $H = B^*$. $\eta(X, \delta)$ is called the δ -Szlenk index of X. Obviously $\eta(H, \delta) \leq \eta(X, \delta)$ for all $H \subset B^*$.

We can now formulate Zippin's result [11]. Although the following lemma is not formulated as such in [11], it summarizes Zippin's beautiful construction.

ZIPPIN'S LEMMA. Let X be a Banach space with separable dual, and $\varepsilon > 0$. Let F be a ω^* -closed totally disconnected, $(1 - \varepsilon)$ -norming subset of B^* . Then there is a countable ordinal $\alpha, \alpha < \omega^{(\eta(X, \varepsilon/8)+1)}$, and a subspace Y of C(F), isometric to $C(\alpha)$, such that for every $x \in X$, there is a $y \in Y$ with $||i_Fx - y|| \le \varepsilon (1 - \varepsilon)^{-1} ||i_Fx||$.

PROOF OF THEOREM 2. Since $\lambda(x) < \infty$, take $\varepsilon < (10\lambda(x))^{-1}$, and by Proposition 1, find a totally disconnected, ω^* -closed $(1 - \varepsilon)$ -norming subset F of B^* , with a projection $P: C(F) \rightarrow i_F X$ satisfying $||P|| \leq 2\lambda(X)$.

By Zippin's lemma, there is a subspace Y of C(F), isometric to $C(\alpha)$, such that for every $x \in X$ there is a $y \in Y$ with $||i_{F}x - y|| \leq \varepsilon (1 - \varepsilon)^{-1} ||i_{F}x||$.

Since $\varepsilon (1 - \varepsilon)^{-1} || P || < 1$, the restriction of P to Y maps Y onto $i_F X$. Thus X is a quotient of $C(\alpha)$.

PROOF OF THEOREM 3. We distinguish the two cases by considering the Szlenk index of X. By a theorem of Alspach [1], if there is a $\delta > 0$ for which $\eta(X, \delta) \ge \omega$, then X contains a complemented subspace isomorphic to $C(\omega^{\omega})$. Thus X is isomorphic to $C(\omega^{\omega})$ by Pelczynski's decomposition method [6].

If $\eta(X, \delta) < \omega$ for every $\delta > 0$, then by the proof of Theorem 2 and Zippin's lemma, X is a quotient of $C(\alpha)$ for $\alpha < \omega^{m+1}$ where $m = \eta(X, \varepsilon/8) < \omega$. By [3] $C(\alpha)$ is isomorphic to c_0 , and thus X, being an \mathscr{L}_{∞} quotient of c_0 , is isomorphic to c_0 by [5].

§3. Proof of Theorem 1

Let $F_0 = \{\theta \in X^* : \|\theta\| \le 1 - \varepsilon/2\}$. We shall construct a ω^* -closed, totallydisconnected, $(1 - \varepsilon)$ -norming subset F of B^* , and a norm one operator $T: C(F) \to C(F_0)$ satisfying $\|Ti_F x - i_{F_0} x\| \le \frac{1}{2}\varepsilon \|x\|$. We then define $W: C(F_0) \to C(B^*)$ by $(Wf)(\theta) = f((1 - \varepsilon/2)\theta)$, and S = WT. Obviously $||S|| \le 1$, and for every $x \in X$ and $\theta \in B^*$

$$|(Si_{FX})(\theta) - ix(\theta)| \leq |(Ti_{FX})((1 - \varepsilon/2)\theta) - i_{F_{0}}x((1 - \varepsilon/2)\theta)| + \frac{1}{2}\varepsilon |x(\theta)|$$
$$\leq \frac{1}{2}\varepsilon ||x|| + \frac{1}{2}\varepsilon ||x|| = \varepsilon ||x||.$$

Since X is separable, we can find a biorthogonal sequence (x_n, θ_n) in X with $||x_n|| = 1$ for all n, such that $\{x_n\}$ span a dense subset of X. The metric $\rho(\theta, \psi) = \sum 2^{-(n+1)} ||\theta(x_n) - \psi(x_n)||$ induces the ω^* -topology on B^* .

For $n \ge 1$, let M_n be integers satisfying $\Sigma \| \theta_n \| M_n^{-1} < \varepsilon/2$, and $A_n = \{j/M_n : j \text{ is an integer, } |j| \le M_n\}$. Let $F_n = \{\theta \in B^* : \theta(x_j) \in A_j \ j = 1, \dots, n \text{ and } \| \theta \| \le 1 - \sum_{i \ge n} \| \theta_i \| M_i^{-1} \}$ and set $F = \bigcap_{n \ge 1} \overline{(\bigcup_{j \ge n} F_j)}^{\omega^*}$.

Every point $\theta \in F$ satisfies $\theta(x_n) \in A_n$ for all *n*, thus the map $\phi: F \to \prod_{n \ge 1} A_n$, defined by $\phi(\theta) = (\theta(x_1), \theta(x_2), \cdots)$, is a homeomorphism of *F* into the Cantor set $\prod A_n$. Consequently *F* is totally disconnected.

To show that F is $(1 - \varepsilon)$ -norming, we shall show that it is an $\varepsilon/2$ -net (in the norm topology!) in $(1 - \varepsilon/2)B^*$. Thus let $\|\psi\| \le 1 - \varepsilon/2$, and for each *n*, choose j_n such that $(j_n - 1)M_n^{-1} \le \psi(x_n) \le (j_n + 1)M_n^{-1}$, and define $\theta = \psi + \sum_{n \ge 1} (j_n M_n^{-1} - \psi(x_n))\theta_n$. Since $\sum \|(j_n M_n^{-1} - \psi(x_n))\theta_n\| \le \sum M_n^{-1} \|\theta_n\| < \varepsilon/2$, θ is well defined, $\|\theta - \psi\| < \varepsilon/2$, and $\|\theta\| < 1$. Since also $\theta(x_n) = j_n M_n^{-1} \in A_n$ for all *n*, the condition $\|\theta\| < 1$ implies that $\theta \in F_n$ for all large enough *n*, hence $\theta \in F$.

To construct T, we shall use the fact that the points in F_{n-1} are "very close" to points in F_n , to construct for each $n \ge 1$ a norm one operator $T_n: C(F_n) \to C(F_{n-1})$ which almost commutes with the embeddings of X (see (b) below). The operator T is then obtained from the T_n 's by a limiting procedure.

Thus fix $n \ge 1$. We shall construct $T_n: C(F_n) \rightarrow C(F_{n-1})$, satisfying:

(a) For every $\theta \in F_{n-1}$, $(T_n f)(\theta)$ is a convex combination of the values of f at some points $\{\psi_j\}$ in F_n (depending on θ) with $\rho(\theta, \psi_j) \leq 2^{-n}$ for every j.

(b) $|| T_n i_{F_n} x - i_{F_{n-1}} x || \leq M_n^{-1} || \theta_n || || x ||.$

Let $\{g_i(t)\}$ be a partition of unity for [-1, 1], with $\{t: g_i(t) \neq 0\} \subset ((j-1)M_n^{-1}, (j+1)M_n^{-1})$, and define $T_n(f)$ for $f \in C(F_n)$ and $\theta \in F_{n-1}$ by

$$(T_nf)(\theta) = \sum_{|j| \leq M_n} g_j(\theta(x_n))f(\theta + (jM_n^{-1} - \theta(x_n))\theta_n).$$

Also let $\psi_j = \theta + (jM_n^{-1} - \theta(x_n))\theta_n$. If for some $j, g_j(\theta(x_n)) \neq 0$, then $(j-1)M_n^{-1} < \theta(x_n) < (j+1)M_n^{-1}$, and thus $\|\theta - \psi_j\| \le M_n^{-1} \|\theta_n\|$. Also, since $\theta \in F_{n-1}, \psi_j(x_i) \in A_i$ for all $i \le n$.

Thus T_n is well defined: If the j^{th} term in the sum is non-zero, then

 $\|\psi_j\| \le \|\theta\| + M_n^{-1}\|\theta_n\| \le 1 - \sum_{i>n} M_i^{-1}\|\theta_i\|$ (because $\theta \in F_{n-1}$), and thus $\psi_j \in F_n$. (It is also clear that $T_n f$ is a continuous function.)

Since for every θ , the $g_j(\theta(x_n))$ are non-negative and sum to one, $(T_n f)(\theta)$ is a convex combination of the numbers $f(\psi_j)$. Also $\rho(\psi_j, \theta) = 2^{-(n+1)} |\theta(x_n) - \psi_j(x_n)| \le 2^{-n}$ for every j for which $g_j(\theta(x_n)) \ne 0$, and thus (a) holds. (Note that (a) also implies that $||T_n|| \le 1$.)

To prove (b), notice that if $x \in X$, it is linear on B^* , hence

$$(T_n i_{F_n} x)(\theta) = \theta(x) + \sum g_j(\theta(x_n))(jM_n^{-1} - \theta(x_n))\theta_n(x),$$

or (since $(i_{F_{n-1}}x)(\theta) = \theta(x)$)

$$|(T_n i_{F_n} x)(\theta) - (i_{F_{n-1}} x)(\theta)| \leq M_n^{-1} || \theta_n || || x ||$$

(because each of the non-zero terms in the convex combination is bounded by the right hand side).

The limiting procedure is described in the following:

CLAIM. Let $f \in C(F)$, and let *h* be any continuous extension of *f* to B^* . Then $f_n = (T_1 \cdots T_n)(h \mid_{F_n})$ is a Cauchy sequence in $C(F_0)$. Moreover, $Tf = \lim f_n$ is independent of the particular choice of the extension *h*.

PROOF OF THE CLAIM. Fix any $\delta > 0$. By the continuity of h there is an $\eta > 0$ such that $\rho(\theta, \psi) < \eta$ implies that $|h(\theta) - h(\psi)| < \delta$, and choose N so that $\sum_{n \ge N} 2^{-n} < \eta$. Since $||T_j|| = 1$, we get for every $n > m \ge N$ that

$$\|f_{n} - f_{m}\| = \|T_{1} \cdots T_{m}(h|_{F_{m}}) - T_{1} \cdots T_{n}(h|_{F_{n}})\|$$

$$\leq \|h|_{F_{m}} - T_{m+1} \cdots T_{n}(h|_{F_{n}})\|.$$

Thus fix any $\theta \in F_m$. Using (a) inductively, we see that $(T_{m+1} \cdots T_n(h \mid_{F_n}))(\theta)$ is a convex combination of the values of h at some points $\{\psi_j\}$ in F_n , with $\rho(\theta, \psi_j) \leq \sum_{m=1}^{n} 2^{-k} < \eta$. But then $|h(\theta) - h(\psi_j)| < \delta$ for all j, and the same holds for their convex combinations, i.e., $|(T_{m+1} \cdots T_n(h \mid_{F_n}))(\theta) - h(\theta)| < \delta$, and $\{f_n\}$ is indeed a Cauchy sequence.

Also if h_1 is another extension of f to B^* , let $U = \{\theta : |h(\theta) - h_1(\theta)| < \delta\}$. U is an open neighborhood of F, and thus, by the definition of F, there is an N so that $F_n \subset U$ for every $n \ge N$. Using again the fact that $||T_n|| = 1$ for all n, we get that $||T_1 \cdots T_n(h|_{F_n} - h_1|_{F_n})|| \le \delta$.

The operator $T: C(F) \rightarrow C(F_0)$ defined by the claim is the desired operator. It is obviously linear, and ||T|| = 1 by an argument similar to the last argument in the proof of the claim.

Y. BENYAMINI

Now if $x \in X$, we can take h = ix as the extension of $f = i_F x$. We then get by (b) that for every $n \ge 1$

$$\| T_1 \cdots T_n i_{F_n} x - i_{F_0} x \| \leq \sum_j \| T_1 \cdots T_j i_{F_j} x - T_1 \cdots T_{j-1} i_{F_{j-1}} x \|$$
$$\leq \Sigma \| T_j i_{F_j} x - i_{F_{j-1}} x \| \leq \Sigma M_j^{-1} \| \theta_j \| \| x \|$$
$$\leq \varepsilon /2 \| x \|.$$

Hence also in the limit $|| Ti_F x - i_{F_0} x || \le \varepsilon / 2 || x ||$.

REMARK. It may be of some importance to note that the operator T is "almost" a simultaneous extension operator. Indeed, one easily checks that if $\theta \in F_n \cap F_{n-1}$ then $(T_n f)(\theta) = f(\theta)$ for all $f \in C(F_n)$. And thus also in the limit we get that $Tf(\theta) = f(\theta)$ for all $\theta \in F \cap F_0$ and $f \in C(F)$.

References

1. D. E. Alspach, Quotients of C[0, 1] with separable dual, to appear.

2. Y. Benyamini and J. Lindenstrauss, A predual of l_1 which is not isomorphic to a C(K)-space, Israel J. Math. 13 (1972), 246–259.

3. C. Bessaga and A. Pelczynski, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-62.

4. S. Z. Ditor, On a lemma of Milutin concerning averaging operators in continuous function spaces, Trans. Amer. Math. Soc. 149 (1970), 443-452.

5. W. B. Johnson and M. Zippin, On subspaces of quotients of $(\Sigma G_n)_{l_p}$ and $(\Sigma G_n)_{q_p}$, Israel J. Math. 13 (1972), 311-316.

6. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, Springer-Verlag Lecture Notes in Mathematics **338** (1973).

7. S. Mazurkiewicz and W. Sierpinski, Contribution à la topologie des ensembles dénomrables, Fund. Math. 1 (1920), 17-27.

8. A. A. Milutin, Isomorphisms of spaces of continuous functions on compacta of power continuum, Tieoria Func. (Kharkov) 2 (1966), 150-156 (Russian).

9. A. Pelczynski, Linear extensions, linear averaging and their application to linear topological classification of spaces of continuous functions, Rozprawy Mathematyczne 58 (1968).

10. W. Szlenk, The non-existence of a separable reflexive Banach space, universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61.

11. M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), 372-387.

DEPARTMENT OF MATHEMATICS OHIO STATE UNIVERSITY

COLUMBUS, OHIO 43210 USA